Langsung ke konten utama

PERBANDINGAN TRIGONO METRI PADA SEGITIGA SIKU SIKU


 Untuk definisi perbandingan trigonometri sudut siku-siku pertama adalah:


 Dan untuk definisi perbandingan trigonometri sudut siku-siku kedua, adalah:


CONTOH 1

Tentukan semua perbandingan trigonometri untuk sudut α pada segitiga ABC dan sudut β untuk segitiga PQR !




penyelesaian : 

Perhatikan segitiga ABC
AC = (3)2+12 = 2

Sesuai dengan definisi, maka
sin(α) = depanmiring = ABAC = 32
cos(α) = sampingmiring = BCAC = 12
tan(α) = depansamping = ABBC = 31 = 3
csc(α) = miringdepan = ACAB = 23 = 233
sec(α) = miringsmping = ACBC = 21 = 2
cot(α) = sampingdepan = BCAB = 13 = 33

Perhatikan segitiga PQR
QR = (2)212 = 1

Sesuai dengan definisi, maka
sin(β) = depanmiring = QRPR = 12 = 22
cos(β) = sampingmiring = PQPR = 12 = 22
tan(β) = depansamping = QRPQ = 11 = 1
csc(β) = miringdepan = PRQR = 21 = 2
sec(β) = miringsamping = PRPQ = 21 = 2
cot(β) = sampingdepan = PQQR = 11 = 1


Contoh 2
Jika tan(α) = 3 dan α sudut lancip, tentukan nilai dari sin2(α)+cos2(α)

Penyelesaian :
tan(α) = depansamping = 31

Karena perbandingan trigonometri memenuhi konsep kesebangunan, dapat ditulis :
depan = 3
samping = 1

Dengan teorema phytagoras
miring = (3)2+12 = 2


Berdasarkan definisi, kita peroleh
sin(α) =  32
cos(α) = 12

sin2(α) + cos2(α) = (32)2 + (12)2
sin2(α) + cos2(α) = 34 + 14
sin2(α) + cos2(α) = 1

Jadi, sin2(α) + cos2(α) = 1


Contoh 3
Jika sin(β) = 12 dan sudut β lancip, tentukan nilai dari sec2(β)tan2(β)

Penyelesaian :
sin(β) = depanmiring = 12

depan = 1
miring = 2
samping = 2212 = 3


Sesuai definisi
sec(β) = 23
tan(β) = 13

sec2(β) − tan2(β) = (23)2 − (13)2
sec2(α) − tan2(α) = 43 − 13
sec2(α) − tan2(α) = 1

Jadi, sec2(β) − tan2(β) = 1


Contoh 4
Jika cos(γ) = 22 dan sudut γ lancip, tentukan nilai dari csc2(γ)cot2(γ)

Penyelesaian :
cos(γ) = sampingmiring = 22
samping = 2
miring = 2
depan = 22(2)2 = 2


Sesuai definisi
csc(γ) = 22
cot(γ) = 22 = 1

csc2(γ) − cot2(γ) = (22)2  − (1)2
csc2(γ) − cot2(α) = 2 − 1
csc2(γ) − cot2(α) = 1

Jadi, csc2(γ) − cot2(γ) = 1

Contoh 5
Diberikan segitiga ABC B dengan A=α dan C=β. Tunjukkan bahwa sin(α)=cos(90α) dan cos(β)=sin(90β)

Penyelesaian :


Sesuai definisi, maka
sin(α) = BCAC
cos(β) = BCAC

Dari kedua persamaan diatas, maka
sin(α) = cos(β)  ......................................(1)

∠A + ∠B + ∠C = 180°
α + 90° + β = 180°
α + β = 90°
α = 90° − β  .............................(2)

β = 90° − α  .............................(3)

Substitusi (2) ke (1) diperoleh
sin(90° − β) = cos(β)

Substitusi (3) ke (1) diperoleh
sin(α) = cos(90° − α)


DAFTAR PUSTAKA 
judul postingan : perbandingan trigonometri pada segitiga siku siku
sumber : ruang guru dan SMATIKA
tahun terbit : 2020 dan 2017

Komentar

Postingan populer dari blog ini

AKU SENANG SEBAGAI SISWA SMAN 63 JAKARTA

PENILAIAN HARIAN MATEMATIKA RAHMA FAUZIAH X IPS 1

Gambar

Komentar

Postingan populer dari blog ini

MUHAMMAD RISKY

INDUKSI MATEMATIKA